

FTIR Instrument design for the Outer Solar System atmospheric studies

Authors: E. Brageot, M. Lindeman, G. Orton

Presenter: Peter Sullivan

March 8th 2017

Table of Contents

- I. Introduction
- II. Instrument design trade study
- III. Radiometric modelling and main instrument parameters
- IV. Optical design
- V. Conclusions

Introduction •

I. Introduction

Nearing end of Cassini mission in Nov 2017

 Need new planetary instrument concept for atmospheric study of giant planets and moons like Uranus, Neptune, Saturn & Titan, and also spectroscopic study of rings and icy moons.

Instrument design trade study

II. Instrument design trade study

Scientific objectives

- Atmospheric study of Gas Giants
- Moons, asteroids, ring particles

Methane cycle, D/H & He/H2 ratios, atmosphere trace constituents (CH4, NH3, PH3...), composition of impurities on icy surfaces, ring particles thermal inertia and composition

A. Coustenis et al.: The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra, Icarus, Volume 189, Issue 1, July 2007, Pages 35–62

Needed:

- spectral resolution of 0.1cm⁻¹
- spectral range of 100-1400cm⁻¹

Preferred:

- 2D staring acquisition
- IFOV 1mrad
- spectra acquired within minutes

Add Spatial & Temporal aspect for atmospheric dynamics

II. Instrument design trade study

Detector technology

- Yttrium barium copper oxide (YBCO) high temperature superconducting kinetic inductance bolometers (KIBs)
 - 2D kilo-pixel arrays
 - Visible to Far IR wavelength range
 - High operation temperature bolometers (55K)
 - High sensitivity

II. Instrument design trade study

Instrument design

All reflective design:
Grating spectrometer or FTIR?

FTIR Instrument

New generation of Cassini CIRS like instrument

	Characteristic	Grating spectrometer	Interferometer
	Wavelength range	All-reflective designs possible	Synthetic diamond beamsplitter element
		>3 octaves to cover (low efficiency)	Sampling easier at long wavelengths
	Throughput ¹	$A\Omega = \frac{l_{slit} \times A_{grating}}{F \times R}$	$A\Omega = rac{\pi imes A_{beam}}{R}$ (Jacquinot advantage)
ſ	Spectral resolution	Fixed: $\Delta\lambda = 1.6 \mu m$ for 40×50 pixel array	Tunable with OPD $(\sim^1/_{\Delta \nu})$
	Mechanisms	None - 2D imaging via scanning the scene (slit) with the spacecraft motion	 Moving mirror for starring design No moving parts for scanning design

Radiometric modelling and main instrument parameters

III. Radiometric modelling and main instrument parameters

Radiometric model based on:

- detector performance, (specific detectivity, response time, pixel pitch)
- desired IFOV,(GSD 31km at 31,000km)
- spectral resolution,
- Instrument temperature,
- need for a compact design.

Instrument parameter	Value
IFOV	1 mrad
FOV	2.86x2.29 deg
F-number	11.2
Focal length	1000 mm
Spectral resolution	0.1 cm ⁻¹
Wavelength range	100-1400cm-1
Complete spectra acquisition time	200s
Modelled Spectra SNR for 90K scene	2995
Modelled Spectra SNR for 50K scene	170

IV. Optical design

Interferometer relay

Full off-axis design for increased throughput

Synthetic diamond beamsplitter: 7 to >100µm

 $\times 1.44$

>10cm OPD using corner cube

2 design version of telescope:

On axis:

- Optical design volume: 550×405×145mm³

- Obscuration -8.6%

Off-axis:

- Optical design volume: 550×530×160mm³

- No obscuration

Conclusions

IV. Conclusions

Preliminary Optical design complete but still lots to do:

- Stray light analysis, spectral resolution across FOV analysis
- Passive thermal design modelled,
- New instrument mass, volume, and power estimates in work
- Instrument testbed
-

jpl.nasa.gov

IV. Optical design

Telescope

